Finite horizon exploration for path integral control problems

نویسنده

  • Hilbert J. Kappen
چکیده

We have recently developed a path integral method for solving a class of non-linear stochastic control problems in the continuous domain [1, 2]. Path integral (PI) control can be applied for timedependent finite-horizon tasks (motor control, coordination between agents) and static tasks (which behave similar to discounted reward reinforcement learning). In this control formalism, the cost-togo or value function can be solved explicitly as a function of the environment and rewards (as a path integral). Thus, for PI control one does not need to solve the Bellman equation. The computation of the path integral can also be complex, but one can use methods and concepts from statistical physics, such as Monte Carlo sampling or the Laplace approximation to obtain efficient approximations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation

In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Solving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme

We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...

متن کامل

A generalization of Fatou’s lemma for extended real-valued functions on σ-finite measure spaces: with an application to infinite-horizon optimization in discrete time

Given a sequence [Formula: see text] of measurable functions on a σ-finite measure space such that the integral of each [Formula: see text] as well as that of [Formula: see text] exists in [Formula: see text], we provide a sufficient condition for the following inequality to hold: [Formula: see text] Our condition is considerably weaker than sufficient conditions known in the literature such as...

متن کامل

Adaptive importance sampling for control and inference

Path integral (PI) control problems are a restricted class of non-linear control problems that can be solved formally as a Feynman–Kac PI and can be estimated using Monte Carlo sampling. In this contribution we review PI control theory in the finite horizon case. We subsequently focus on the problem how to compute and represent control solutions. We review the most commonly used methods in robo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006